

Fig. 1. The molecular structure of the title compound with numbering.

scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV). All computations performed on a Nova 4S computer and plots drawn on Tektronix plotter with the *SHELXTL* system of programs.

Atomic coordinates are in Table 1.* A perspective molecular drawing and the atom labelling are displayed in Fig. 1. Bond distances and angles are listed in Table 2.

We thank Mrs Cynthia Lesh de Soriano for technical assistance.

* Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53108 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

CREMER, D. & POPLE, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

SHELDRICK, G. M. (1985). SHELXTL Users Manual. Revision 5.1. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1990). C46, 2480–2482

(±)-tert-Butyl [(Methyl)(1-naphthyl)(phenyl)silyl]acetate

BY FRANK R. FRONCZEK*

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

AND GERALD L. LARSON,[†] AND JUAN SUAREZ

Department of Chemistry, University of Puerto Rico, Rio Piedras, PR 00931, USA

(Received 13 February 1990; accepted 22 May 1990)

Abstract. $C_{23}H_{26}O_2Si$, $M_r = 362.6$, triclinic, P1, a = 11.275(1), b = 11.585(1), c = 9.682(1) Å, $\alpha = 101.91(1)$, $\beta = 99.81(1)$, $\gamma = 119.09(1)^\circ$, V = 1025.7(6) Å³, Z = 2, $D_x = 1.174$ g cm⁻³, λ (Cu K α) = 1.54184 Å, $\mu = 10.89$ cm⁻¹, F(000) = 388, T = 301 K, R = 0.038 for 3157 observations (of 3884 unique data). Si—C distances are 1.859(1) (methyl), 1.871(1) (phneyl), 1.879(1) (naphthyl) and 1.896(1) Å (*tert*-butyl acetate). No evidence for an interaction between the Si atom and the carbonyl O atom was found.

Experimental. Colorless crystal of (1), dimensions $0.48 \times 0.48 \times 0.64$ mm, mounted in capillary, space group from successful refinement of centrosymmetric model, cell dimensions from setting angles of 25

† Current address: Petrarch Systems, Bartram Road, Bristol, PA 19007, USA.

0108-2701/90/122480-03\$03.00

reflections having $32 > \theta > 30^\circ$. Data collection on Enraf-Nonius CAD-4 diffractometer, Cu K α radiation, graphite monochromator, $\theta-2\theta$ scans designed for $I = 50\sigma(I)$, subject to maximum scan time 120 s, scan rates varied $0.53-5.0^\circ \text{min}^{-1}$. Data with $2 < \theta <$ 70° , $0 \le h \le 13$, $-14 \le k \le 14$, $-11 \le l \le 11$ measured, corrected for background, Lorentz, polarization, absorption by ψ scans, minimum relative transmission coefficient 97.46%.

Standard reflections 500, 030, 003, $\pm 2.4\%$ maximum variation; no decay correction. 3884 unique © 1990 International Union of Crystallography

^{*} Address correspondence to this author.

Table 1. Coordinates and equivalent isotropic thermal Table 2. Bond lengths (Å), angles (°) and selected parameters torsion angles (°)

	$\boldsymbol{D}_{eq} = (8\pi^{-}/3) \boldsymbol{\sum}_{i} \boldsymbol{\sum}_{j} \boldsymbol{U}_{ij} \boldsymbol{a}_{i}^{*} \boldsymbol{a}_{j}^{*} \boldsymbol{a}_{i} \boldsymbol{a}_{j}.$				
	x	у	Ζ	$B_{eq}(Å^2)$	
Si	0.26190 (4)	0.12430 (4)	0.86726 (4)	3.524 (9)	
01	0.1421 (1)	0.3375 (1)	0.8142 (1)	5.93 (3)	
O2	0.1470 (1)	0.23152 (9)	0.5938 (1)	4.05 (3)	
C1	0.0936 (2)	0.1044 (1)	0.7557 (2)	3.96 (4)	
C2	0.1281 (2)	0.2372 (1)	0 7272 (2)	3.99 (4)	
C3	0.3170 (2)	0.2444 (2)	1.0585 (2)	5.42 (5)	
C4	0.4073 (2)	0.1978 (1)	0.7803 (2)	3.70 (3)	
C5	0.3936(1)	0.1339(1)	0.6300 (2)	3.59 (3)	
C6	0.2700 (2)	0.0053 (2)	0.5334 (2)	4.25 (4)	
C7	0.2595 (2)	-0.0521(2)	0.3896 (2)	5.19 (5)	
C8	0.3739 (2)	0.0157 (2)	0.3353 (2)	5.79 (5)	
C9	0.4940 (2)	0.1376 (2)	0.4244 (2)	5.55 (5)	
C10	0.5092 (2)	0.2002(1)	0.5735 (2)	4.31 (4)	
C11	0.6361 (2)	0.3261(2)	0.6688 (2)	5.35 (5)	
C12	0.6485 (2)	0.3857 (2)	0.8100(2)	5.37 (5)	
C13	0.5336 (2)	0.3216 (2)	0.8650 (2)	4.61 (4)	
C14	0.2188 (2)	-0.0498 (1)	0.8808 (2)	3.66 (3)	
C15	0.1050 (2)	-0.1283 (2)	0.9291(2)	4.70 (4)	
C16	0.0759 (2)	-0.2540 (2)	0.9474 (2)	6.02 (6)	
C17	0.1582 (2)	-0.3042(2)	0.9148 (2)	6.67 (6)	
C18	0.2716 (2)	- 0·2295 (2)	0.8684 (2)	7.17 (6)	
C19	0.3021 (2)	-0.1036 (2)	0.8510 (2)	5.42 (4)	
C20	0.2015 (2)	0.3554 (1)	0.5443 (2)	4.27 (4)	
C21	0.3441 (2)	0.4751 (2)	0.6547 (2)	5.68 (5)	
C22	0.2215 (2)	0.3019 (2)	0.3994 (2)	5.92 (6)	
C23	0.0895 (2)	0.3919 (2)	0.5192 (2)	6.00 (5)	

2/22555

Fig. 1. Numbering scheme and thermal ellipsoids drawn at the 40% probability level.

data, 3157 observed with $I > 3\sigma(I)$. Structure solved by direct methods using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978), refined by full-matrix least squares based on F with weights $w = 4F_o^2[\sigma^2(I) + (0.02F_o^2)^2]^{-1}$, using Enraf-Nonius SDP (Frenz & Okaya, 1980), scattering factors of Cromer & Waber (1974), anomalous coefficients of Cromer (1974). Non-H anisotropic, H atoms located by ΔF and refined isotropically. Final R = 0.038 (0.053 for all data), wR = 0.060, S = 2.319for 340 variables. Maximum $\Delta/\sigma = 0.06$ in final cycle, maximum residual density 0.20, minimum $-0.17 \text{ e} \text{ Å}^{-3}$, extinction $g = 6.5 \text{ (6)} \times 10^{-6}$, where the correction factor $(1 + gI_c)^{-1}$ was applied to F_c .

Si-Cl	1.896 (1)	C8C9	1.346 (2)
Si-C3	1.859 (1)	C9-C10	1.415 (2)
Si-C4	1.879 (1)	C10-C11	1.412(2)
Si-C14	1.871 (1)	C11-C12	1.348 (2)
01-C2	1.207(1)	C12-C13	1.406(2)
02	1.339 (1)	C14C15	1,307 (2)
O2-C20	1.481(1)	C14-C19	1.302 (2)
\tilde{C}_{1}	1.491 (2)	C14-C15	1.396 (2)
C4C5	1.434(2)		1.250 (2)
C4-C13	1,374 (2)	C17_C18	1.365 (3)
C5-C6	1.414(2)	C17-C18	1.380 (3)
C5-C10	1.475 (2)	C10-C19	1.380 (2)
C5-C10	1.423 (2)	C20-C21	1.512 (2)
C_{1}	1.372 (2)	C20-C22	1.512 (2)
C/C8	1.404 (2)	C20-C23	1.514 (2)
		C—H range	0.75 (2)-1.01 (2)
C1—Si—C3	107.09 (8)	C5-C10-C9	119.22 (13)
C1-Si-C4	110.54 (5)	C5-C10-C11	118.85 (12)
CI-Si-C14	109-11 (5)	C9-C10-C11	121.93 (13)
C3-Si-C4	110.69 (7)	C10-C11-C12	121.35 (13)
C3-Si-C14	107.63 (7)	C11-C12-C13	119.8 (2)
C4-Si-C14	111.62 (5)	C_{12} $-C_{13}$ $-C_{4}$	122 4 (2)
C2-O2-C20	122.18 (9)	Si-Cl4-Cl5	120.74 (10)
Si-C1-C2	110.26 (9)	Si-C14-C19	122.21 (9)
01 - C2 - 02	124.70 (11)	C15-C14-C19	116.97 (12)
01-C2-C1	124.90 (11)	CI4-C15-C16	121.7 (2)
02 - C2 - C1	110.35 (10)	C15-C16-C17	110.6 (2)
Si-C4-C5	123.00 (0)		120.4 (2)
Si-C4-C13	117.99 (10)	C17-C18-C19	120:4 (2)
CS-C4-C13	118.01 (11)	C14 C10 C19	120.4 (2)
C1	122.02 (11)	C14 - C19 - C18	121.0 (2)
$C_{4} C_{5} C_{10}$	125.05 (11)	02 - 02 - 021	110-11 (10)
C4-C5-C10	117.34 (11)	02 - 02 - 022	102.07 (10)
C_{1}	11/42 (11)	02 - 020 - 023	109-22 (11)
$C_{1} = C_{1} = C_{1}$	121.30 (13)	$C_{21} - C_{20} - C_{22}$	110.0 (2)
$C_{1} C_{2} C_{3}$	120.2 (2)	C21-C20-C23	113.4 (2)
$C^{2} = C^{2} = C^{2}$	120.0 (2)	$C_{22} - C_{20} - C_{23}$	111-4 (2)
C8-C9-C10	121.6 (2)		
C1—Si—C14—C15	- 48.71 (14)	Si-C1-C2-O2	100.11 (14)
C1—Si—C4—C5	- 48 21 (14)	C1-C2-O2-C20	- 170.63 (15)
C14—Si—C1—C2	- 173-71 (10)	C2-02-C20-C22	172.2 (2)
av n		$\sim 1 \sim$	
$\nabla \mathbf{M}$			

Fig. 2. Stereoview of the unit cell.

Coordinates* are given in Table 1; bond distances and angles are given in Table 2; the molecule is illustrated in Fig. 1; the molecular packing is shown in Fig. 2.

Related literature. Reaction of α -(methyldiphenylsilvl) esters with Grignard reagents: Larson, Hernandez, Montes de Lopez-Cepero & Torres (1985); crystal structures containing the α -[(methyl)-

* Lists of H-atom parameters, torsion angles, anisotropic thermal parameters, deviations from least-squares planes and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53147 (25 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

(naphthyl)(phenyl)silyl] group: Okaya & Ashida (1966), Nyburg, Brook, Pascoe & Szymanski (1972), Hitchcock (1976), Larson, Sandoval, Cartledge & Fronczek (1983); structure of naphthalene: Cruickshank (1957).

References

- CROMER, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

- CRUICKSHANK, D. W. (1957). Acta Cryst. 10, 504-508.
- FRENZ, B. A. & OKAYA, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Нітснсоск, Р. В. (1976). Acta Cryst. B32, 2014-2017.
- LARSON, G. L., HERNANDEZ, D., MONTES DE LOPEZ-CEPERO, I. & TORRES, L. E. (1985). J. Org. Chem. 50, 5260–5267.
- LARSON, G. L., SANDOVAL, S., CARTLEDGE, F. K. & FRONCZEK, F. R. (1983). Organometallics, 2, 810-815.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- NYBURG, S. C., BROOK, A. G., PASCOE, J. D. & SZYMANSKI, J. T. (1972). Acta Cryst. B28, 1785–1791.
- OKAYA, Y. & ASHIDA, T. (1966). Acta Cryst. 20, 461-471.

Acta Cryst. (1990). C46, 2482-2484

Structure of the Coumarin Angustifolin

BY FRANCISCO A. MACIAS, ROSARIO H. GALAN, GUILLERMO M. MASSANET, FRANCISCO RODRIGUEZ-LUIS AND JAVIER SALVA

Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Cadiz, Apdo 40, 11510 Puerto Real, Cadiz, Spain

AND FRANK R. FRONCZEK

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

(Received 16 February 1990; accepted 22 May 1990)

Abstract. Angustifolin, $C_{14}H_{14}O_3$, $M_r = 230.3$, monoclinic, $P2_1/c$, a = 7.5555 (9), b = 14.1532 (11), c =11.307 (3) Å, $\beta = 99.07$ (2)°, V = 1193.9 (6) Å³, Z =4, $D_x = 1.281 \text{ g cm}^{-3}$, Cu K α , $\lambda = 1.54184 \text{ Å}$, $\mu =$ 6.92 cm^{-1} , F(000) = 488, T = 294 K, R = 0.040 for2205 observations with $I > 3\sigma(I)$ (of 2455 unique data). Crystals were prepared via sigmatropic rearrangements from 7-hydroxycoumarin, which was isolated from Ruta angustifolia Pers., collected in San Agustin de Gaudalix, Madrid province, Spain. The aromatic ring exhibits a maximum deviation of 0.008 (1) Å from planarity, and the ten atoms of the ring system have a maximum deviation of 0.027 (1) Å from a common plane. The double bond of the prenyl group has a C=C distance of 1.286 (1) Å, and it forms a torsion angle having a magnitude of $31 \cdot 2$ (2)° with one of the C—C(methyl) bonds. Molecules related by the screw axis form linear hydrogen bonds involving the hydroxy group and the carbonyl O atom, having an O-O distance of 2.7064 (7) Å and an angle at H of $174.6 (11)^{\circ}$.

Experimental. Angustifolin was obtained as colorless needles. The sample was a fragment with dimensions 0108-2701/90/122482-03\$03.00

 $0.43 \times 0.62 \times 0.65$ mm. Space group from absences h0l with l odd and 0k0 with k odd. Enraf-Nonius diffractometer with graphite mono-CAD-4 chromator, cell dimensions from setting angles of 25 reflections having $30 > \theta > 25^{\circ}$. Data collection by ω -2 θ scans designed for $I = 25\sigma(I)$, subject to maximum scan time = 90 s. Scan rates varied 0.82- 3.30° min⁻¹. Reflections having $4 < 2\theta < 150^{\circ}$, $0 \le h$ $\leq 9, 0 \leq k \leq 17, -14 \leq l \leq 14$ measured, corrected for background, Lorentz-polarization, and absorption by ψ scans, minimum relative transmission 0.8861. Redundant 0kl and 0kl data average ($R_{int} =$ 0.020), yielding 2455 unique data. Standard reflections 300, 080, 002, random variation, no decay correction. Structure solved using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978), refinement by full-matrix least squares based on F with weights $w = 4F_o^2[\sigma^2(I) +$ $(0.02F_o^2)^2$ ⁻¹ with 2205 data for which $I > 3\sigma(I)$ (250 unobserved reflections), using Enraf-Nonius SDP (Frenz & Okaya, 1980). Non-H positions refined with anisotropic thermal parameters; H-atom positions located from difference maps and refined with isotropic thermal parameters. Atomic scattering © 1990 International Union of Crystallography